
ECE547/CSC547
Cloud Computing Technology

Fall 2023 Project Report

Health Monitoring Wearables and Cloud Integration

Swarangi Gaurkar (sgaurka), Student ID- 200478283
Tanisha Khurana (tkhuran3), Student ID- 200483139

November 25, 2023

“We, the team members, understand that copying & pasting material from any
source in our project is an allowed practice; we understand that not properly
quoting the source constitutes plagiarism. All team members attest that we have
properly quoted the sources in every sentence/paragraph we have copy & pasted
in our report. We further attest that we did not change words to make copy &
pasted material appear as our work.”

1

Contents

1 INTRODUCTION 4
1.1 Motivation . 4
1.2 Executive Summary . 4

2 PROBLEM DESCRIPTION 5
2.1 The Problem . 5
2.2 Business Requirements . 5
2.3 Technical Requirements . 7
2.4 Trade-Offs . 9

3 PROVIDER SELECTION 11
3.1 Criteria for choosing a provider . 11
3.2 Provider Comparison . 12
3.3 The Final Selection . 13

3.3.1 The list of services offered by the winner 13

4 DESIGN DRAFT 18
4.1 The basic building blocks of the design . 18
4.2 Top-level, informal validation of the design 20
4.3 Action items and rough timeline . 21

5 THE SECOND DESIGN 22
5.1 Use of the Well-Architected framework . 22
5.2 Discussion of pillars . 23

5.2.1 Operational Excellence . 23
5.2.2 Reliability . 25

5.3 Use of Cloudformation diagrams . 27
5.4 Validation of the design . 28
5.5 Design principles and best practices used . 32
5.6 Tradeoffs revisited . 33
5.7 Discussion of an alternate design . 35

6 KUBERNETES EXPERIMENTATION 36
6.1 Experiment Design . 36
6.2 Workload generation with Locust . 38
6.3 Analysis of the results . 44

7 ANSIBLE PLAYBOOKS 50
7.1 Description of management tasks . 50
7.2 Playbook Design . 50
7.3 Experiment runs . 50

8 DEMOSTRATION 51

2

9 COMPARISIONS 52

10 CONCLUSION 53
10.1 The lessons learned . 53
10.2 Possible continuation of the project . 54

11 References 55

3

1 INTRODUCTION

1.1 Motivation

The motivation behind integrating health monitoring wearables with cloud technology stems
from a pressing need to transform and enhance healthcare delivery in the face of global
health challenges. This project aims to empower individuals with real-time insights into
their health, fostering a proactive approach to wellness and disease prevention. By ensuring
continuous monitoring and instant data accessibility, we bridge the gap between patients and
healthcare providers, facilitating timely interventions and personalized care. The amount of
health data generated and stored securely on the cloud also serves as a valuable resource
for medical research, driving innovation and contributing to the advancement of healthcare
solutions. Moreover, this integration promises to increase healthcare accessibility, particularly
in remote areas, ensuring that quality healthcare is within reach for all. In embracing the
digital transformation of healthcare, this project stands at the intersection of technology
and well-being, striving to create a more resilient, efficient, and patient-centered healthcare
ecosystem.

1.2 Executive Summary

This project aims to create a seamless ecosystem where wearable health devices and cloud
computing converge to redefine healthcare. By enabling individuals to monitor their health
through wearable devices and providing healthcare providers with real-time data, the project
enhances patient engagement and empowers more informed healthcare decisions. It estab-
lishes a secure, scalable, and interoperable cloud-based infrastructure for data collection,
analysis, and secure sharing, while prioritizing security and privacy. This initiative not only
benefits individuals by offering personalized health insights but also supports healthcare
providers in delivering more effective care and researchers in advancing public health studies.
Through cost-effective cloud resource management and advanced analytics, the project is
poised to be a game-changer in the healthcare industry.

4

2 PROBLEM DESCRIPTION

2.1 The Problem

The existing healthcare paradigm is predominantly reactive, with noticeable gaps in contin-
uous monitoring and preventive care, particularly for chronic diseases and in remote areas.
Patient-healthcare provider communication is often inefficient, lacking real-time data shar-
ing and collaborative decision-making. Additionally, health data is dispersed across various
platforms, creating silos and impeding holistic analysis. With the increasing adoption of
wearable health devices integrated with cloud technology, there is a pressing need to address
security, privacy, and interoperability issues. Standardization in wearable devices and fos-
tering user adoption also present significant challenges. Addressing these issues is crucial for
transforming healthcare delivery, ensuring accessibility, and enhancing patient outcomes.

2.2 Business Requirements

BR1 Scaling Responsively to Demand:

• Enable the system to dynamically scale both horizontally and vertically, adjusting
to increased workloads and user demands efficiently.

BR2 Fortifying Data Security and Protection:

• Safeguard application data with robust security measures, preventing unautho-
rized access.

• Utilize encryption for data in transit and at rest to ensure comprehensive protec-
tion.

BR3 Ensuring Reliability and High Availability:

• Establish a highly available system with minimal downtime.

• Incorporate redundancy for uninterrupted operations and reliability under various
circumstances.

BR4 Optimizing Cost-Efficiency:

• Streamline cloud resource utilization to manage costs effectively.

• Avoid overprovisioning while ensuring the project remains financially efficient.

BR5 Seamless System Performance:

• Ensure the system operates smoothly, meeting and exceeding user expectations.

• Deliver efficient and responsive performance.

BR6 Regulatory Compliance Assurance:

• Guarantee compliance with industry-specific regulations such as HIPAA, GDPR,
or PCI DSS, where applicable.

5

• Align with relevant standards.

BR7 Implementing Robust Data Management:

• Deploy comprehensive data storage and management strategies.

• Encompass backup, versioning, and data retention policies to effectively safeguard
and manage application data.

BR8 Fostering Interoperability:

• Enhance compatibility by ensuring the system integrates seamlessly with existing
systems.

• Possess the flexibility to connect with third-party services and APIs.

BR9 Instituting Disaster Recovery Preparedness:

• Develop a thorough disaster recovery plan.

• Assure business continuity in the face of data loss or system failures.

BR10 Processing Real-time Data:

• Provide real-time processing capabilities.

• Enable timely health insights and interventions based on user data.

BR11 Monitoring and Logging user data:

• Establish a robust system for monitoring and logging.

• Ensure continuous surveillance of system health, detect anomalies promptly, and
maintain an auditable record of activities.

BR12 Tenant Identification

• Involves user isolation, robust authentication, and authorization, allowing cus-
tomization, maintaining security, aiding billing accuracy, and enhancing user ex-
perience.

• Proper identification supports scalability, ensuring efficient and personalized in-
teractions within shared infrastructure.

BRs for the software architect:

BR13 Elevating User Experience:

• Prioritize an exceptional user experience, crafting a user-friendly project that
caters to the needs and expectations of its intended audience.

6

2.3 Technical Requirements

• TR1.1. Optimizing Performance and Scalability:

– Fine-tune system performance to accommodate concurrent users and large data
volumes.

– Ensure the architecture is scalable to meet future growth and incorporate addi-
tional features.

– Implement elasticity features to dynamically scale resources up or down based on
demand, enhancing system responsiveness.

– Incorporate load balancing mechanisms to distribute workloads evenly across re-
sources, optimizing overall performance and resource utilization.

• TR2.1. Ensuring Security and Privacy Measures:

– Implement end-to-end encryption for data at rest and in transit.

– Adhere to industry-standard security protocols and compliance regulations (e.g.,
HIPAA for healthcare data).

– Institute robust user authentication and authorization mechanisms.

• TR3.1. Implementing Redundancy for High Availability:

– Integrate redundant systems to minimize downtime and ensure continuous opera-
tions.

– Implement automated failover mechanisms to swiftly redirect traffic and opera-
tions, ensuring uninterrupted service delivery and bolstering overall system relia-
bility.

• TR3.2. Promoting Accessibility and Inclusivity:

– Guarantee accessibility for individuals with disabilities, complying with accessi-
bility standards.

– Provide multilingual support to address the needs of a diverse user base.

• TR4.1. Monitoring and Optimizing Cloud Resource Utilization:

– Implement monitoring tools to track resource usage and optimize allocation for
cost efficiency.

– Enable timely detection of anomalies and facilitating proactive management for
optimal performance and cost efficiency.

• TR5.1. Empowering Data Processing and Analysis:

– Deploy potent computational resources for real-time data processing and analysis.

– Integrate machine learning algorithms for predictive analytics and trend analysis.

– Support data visualization tools for easy interpretation of health metrics.

7

• TR6.1. Conducting Regular Compliance Audits:

– Periodically audit the system to ensure ongoing compliance with industry-specific
regulations.

• TR7.1. Enhancing Data Collection and Transmission Capabilities:

– Empower wearable devices to collect diverse health metrics (heart rate, blood
pressure, activity levels, etc.).

– Guarantee secure and encrypted data transmission from wearable devices to the
cloud platform.

– Optimize data transmission for minimal latency, ensuring real-time data availabil-
ity.

• TR7.2. Leveraging Robust Cloud Infrastructure and Data Storage:

– Employ scalable cloud storage solutions to handle the expanding volume of health
data.

– Implement resilient data backup and recovery mechanisms.

– Establish data redundancy across multiple geographic locations to bolster data
durability.

• TR8.1. Facilitating Device Compatibility and Integration:

– Ensure wearable devices seamlessly interface with various operating systems (iOS,
Android).

– Develop APIs to foster smooth integration between wearable devices and cloud
platforms.

– Incorporate support for Bluetooth or other wireless technologies to enhance device
connectivity.

• TR8.2. Driving Interoperability and Standardization:

– Adopt standard data formats (e.g., FHIR) to ensure seamless interoperability
across systems and devices.

– Facilitate integration with electronic health record (EHR) systems and other
healthcare software.

• TR9.1. Developing and Testing Disaster Recovery Plan:

– Develop a comprehensive disaster recovery plan.

– Regularly test the disaster recovery plan to ensure its effectiveness.

• TR10.1 Enable Real-time Analytics and Machine Learning:

– Leverage advanced real-time analytics and machine learning techniques to opti-
mize wearable health monitoring.

8

– Implement algorithms that continuously analyze health data, providing users with
timely insights and personalized recommendations.

• TR11.1 Establish Monitoring and Logging Mechanisms:

– Develop a system that securely monitors and logs user data activities, ensuring
encryption during transit and at rest.

– Efficiently capture and store relevant data for auditing, troubleshooting, and com-
pliance purposes, while handling increasing volumes of user-generated data as the
wearable health tech user base grows.

• TR12.1 Implement Tenant Identification Mechanisms:

– Develop and deploy robust user isolation features through strong authentication
and authorization protocols.

– Enable customization within the shared infrastructure to meet diverse user needs
while upholding stringent security standards.

– Ensure system scalability to handle growing numbers of tenants efficiently and
implement billing accuracy mechanisms by tracking and identifying tenant activ-
ities.

2.4 Trade-Offs

1. Scalability vs. Cost (TR1.1) Tradeoff: Ensuring high scalability, as per TR1.1, may
result in increased costs. Striking a balance between scalability and budget constraints
is crucial to optimize system performance and accommodate future growth.

2. Data Transfer vs. Latency (TR7.1) Tradeoff: Balancing the frequency of data
transfer for real-time health data (TR7.1) with the need for low latency is essential.
Excessive data transfer may impact the speed of data analysis and decision-making.

3. Data Storage vs. Data Privacy (TR7.2) Tradeoff: Storing historical health data
for analysis (TR7.2) can conflict with data privacy considerations. Achieving a balance
between data storage for insights and ensuring privacy is crucial for compliance with
regulations.

4. Data Processing vs. Energy Consumption (TR5.1) Tradeoff: Balancing cloud
data processing intensity (TR5.1) with energy consumption is essential. Intensive data
processing can extend device battery life but may consume additional energy.

5. Real-time Monitoring vs. Connectivity Reliability (TR7.1) Tradeoff: Contin-
uous real-time monitoring (TR7.1) requires reliable connectivity. Striking a balance
between real-time monitoring and ensuring consistent connectivity is crucial for health
data transmission.

9

6. Interoperability vs. Security (TR8.1, TR8.2) Tradeoff: Open APIs for inter-
operability (TR8.1, TR8.2) enhance connectivity but pose security risks. Balancing
interoperability with robust security measures is essential to prevent unauthorized ac-
cess.

7. Multi-Platform Compatibility vs. Development Complexity (TR8.1) Trade-
off: Supporting multiple platforms (TR8.1) increases development complexity. Achiev-
ing compatibility while managing development complexity is crucial for seamless inte-
gration.

8. Interoperability vs. Data Standards (TR8.2) Tradeoff: Achieving interoperabil-
ity with various standards (TR8.2) complicates data integration. Balancing interoper-
ability with adherence to data standards is crucial for efficient processing.

9. Data Ownership vs. Data Sharing (TR7.1, TR8.2) Tradeoff: Balancing in-
dividual data ownership and secure sharing (TR7.1, TR8.2) among stakeholders is
challenging. Determining the level of ownership and sharing is crucial for ethical and
legal considerations.

10. Redundancy vs. Cost Optimization (TR3.1) Tradeoff: Implementing redundancy
for high availability (TR3.1) can be costly. Deciding on the required redundancy level
while optimizing costs is essential for ensuring system reliability.

11. Data Retention vs. Legal Compliance (TR6.1) Tradeoff: Retaining health data
for analysis (TR6.1) presents legal and compliance challenges. Balancing data retention
for research with legal compliance is crucial for meeting regulatory requirements.

12. Tenant Identification Mechanisms vs. Resource Utilization (TR4.1, TR
12.1) Tradeoff: Robust Tenant Identification demands a balance between effective user
recognition and optimal resource use. Prioritizing high scalability may raise infrastruc-
ture costs. Navigating this is vital for efficient performance and accommodating tenant
growth, ensuring a secure and scalable environment. Achieving equilibrium between
identification processes and cost-effectiveness is key.

10

3 PROVIDER SELECTION

3.1 Criteria for choosing a provider

The criteria for choosing a cloud provider are-

1. Global Presence:

• A cloud provider with a global presence has data centers located in multiple re-
gions around the world. This can be important for businesses that need to serve
customers or users in different geographic locations. A global presence can also im-
prove performance and reliability by reducing latency and providing redundancy
in case of outages.

2. Support and Documentation:

• A good cloud provider should offer comprehensive support and documentation
for its products and services. This includes online resources, such as tutorials
and FAQs, as well as phone, email, and chat support. A provider with a strong
support team can help you troubleshoot problems and get the most out of your
cloud investment.

3. Pricing Structure:

• Cloud providers offer a variety of pricing structures, such as pay-as-you-go, re-
served instances, and volume discounts. The best pricing structure for your busi-
ness will depend on your specific needs and usage patterns. It is important to
compare pricing across different providers to find the best deal.

4. Compliance and Security:

• Cloud providers should be able to meet your compliance requirements and provide
robust security controls to protect your data. This includes certifications such as
HIPAA, PCI DSS, and SOC 2. You should also make sure that the provider
has a strong track record of security and that it is transparent about its security
practices.

5. Ease of Integration:

• The cloud provider’s products and services should be easy to integrate with your
existing IT infrastructure. This includes support for standard protocols and APIs,
as well as tools and resources for making the migration process as smooth as
possible.

6. Community and Ecosystem:

• A thriving community and ecosystem can be a valuable resource for cloud users.
This includes access to forums, blogs, and other online resources, as well as op-
portunities to connect with other cloud users and experts. A strong community
can help you learn about new cloud technologies, troubleshoot problems, and get
the most out of your cloud investment.

11

3.2 Provider Comparison

Criteria AWS Azure GCP
Global Presence Rank 2 Extensive

global presence with
data centers in over

24 regions

Rank 1 Global
presence with data
centers in over 60

regions

Rank 3 Global
presence with data
centers in over 20

regions
Support and
Documentation

Rank 1
Comprehensive
support and

documentation with
a variety of

resources, including
online tutorials,
FAQs, and phone,
email, and chat

support

Rank 2 Fairly good
support in form of
documentation,
online tutorials,
phone call and

email.

Rank 3
Comparatively new

community and
average support in

form of
documentation,
online tutorials,
phone call and

email.

Pricing Structure Rank 1 Variety of
pricing structures,
One of cheapest pay
as you go model,
reserved instances,

and volume
discounts. Offers
some services free
for 12 months and
also has free trials.
Offers 40% discount

for 1-year
commitment

Rank 2 Start free,
pay as you go,
Offers popular

services free for 12
months. Azure
offers a 40%

discount for a 1 year
commitment.

Rank 3 Variety of
pricing structures,

including
pay-as-you-go,

reserved instances,
and volume

discounts. GCP
offers 60% discount

for a 1 year
discount.

Compliance and
Security

Rank 1 Strong
compliance and

security with a wide
range of

certifications,
including HIPAA,
PCI DSS, and SOC

Rank 3 Average
compliance and

security with a wide
range of

certifications.

Rank 2 Fairly good
compliance and

security with a wide
range of

certifications.

12

Ease of Integration Rank 1 Easy to
integrate with
existing IT

infrastructure with
support for

standard protocols
and APIs, as well as
tools and resources
for making the

migration process as
smooth as possible.

Rank 2 Ease of
integration with

existing IT
infrastructure with
support is average.

Rank 3 A little
difficult to integrate

with existing IT
infrastructure with

support for
standard protocols

and APIs, as well as
tools and resources

for making the
migration process as
smooth as possible.

Community and
Ecosystem

Rank 1 Thriving
community and
ecosystem with
access to forums,
blogs, and other

online resources, &
opportunities to

connect with other
cloud users and

experts

Rank 2 Fairly good
community and
ecosystem with
access to forums,
blogs, and other
online resources.

Rank 3 Average
community and
ecosystem with

access to forums,
blogs, and other
online resources.

3.3 The Final Selection

The final cloud provider that we chose is AWS (Amazon Web Services).

3.3.1 The list of services offered by the winner

Here is the list of services offered by the AWS cloud provider -

1. Amazon Simple Storage Service (Amazon S3)
https://aws.amazon.com/s3/

Amazon S3 is a scalable object storage service that hosts the raw data files and the
processed files in the data lake for millisecond access. It serves as a secure and scalable
storage solution for storing diverse healthcare data, including user record and sensor
data. It ensures reliable data retrieval and supports the seamless integration of large
volumes of health-related information. Its durability and availability characteristics
make it an ideal choice for critical healthcare information that demands continuous
accessibility. S3’s capabilities extend seamlessly to support the analytical phase of
healthcare data. Leveraging S3’s robust storage infrastructure, the application can
efficiently organize and store large volumes of data generated from wearables. This en-
ables subsequent analysis, allowing healthcare professionals and data scientists to derive
valuable insights from historical and real-time data. S3’s versatility, security features,

13

https://aws.amazon.com/s3/

and ease of integration with other AWS services make it a fundamental component for
both the real-time storage and analysis of healthcare data in our application.

2. AWS Simple Queue Service (SQS)
https://aws.amazon.com/sqs/

Amazon SQS is a message queuing service that enables you to decouple and scale data
ingestion in this use case. It is instrumental for managing communication between
components of our healthcare monitoring system, ensuring reliable and asynchronous
messaging for enhanced system efficiency and responsiveness.

3. Amazon DynamoDB
https://aws.amazon.com/dynamodb/

Amazon DynamoDB is a NoSQL database that delivers single-digit millisecond perfor-
mance at any scale. It is used to avoid processing duplicate files, providing low-latency
and scalable storage for real-time health data. It enables efficient querying and retrieval
of patient-specific information, supporting dynamic and responsive health monitoring
services. DynamoDB’s consistent, single-digit millisecond latency guarantees rapid
access to critical health information, supporting responsive applications and timely
interventions. Additionally, DynamoDB’s flexible data model accommodates the com-
plex and evolving structures inherent in healthcare data. With features like encryption
at rest and in transit, DynamoDB ensures the security and compliance required for
handling sensitive healthcare information. Leveraging DynamoDB in our healthcare
application enhances data management, accessibility, and scalability, contributing to
the overall efficiency and reliability of the system.

4. Amazon Simple Notification Service (Amazon SNS)
https://aws.amazon.com/sns

Amazon SNS is a fully managed messaging service for both application-to-application
(A2A) and application-to-person (A2P) communication. It is used to send email alerts
and plays a key role in our healthcare application by enabling timely and secure commu-
nication of critical notifications. It ensures that healthcare providers and users receive
real-time alerts, such as abnormal health parameter readings or medication reminders,
enhancing proactive healthcare management.

5. AWS Lambda
https://aws.amazon.com/lambda/

AWS Lambda is a compute service that lets you run code without provisioning or man-
aging servers. It is used to trigger appropriate AWS Glue jobs. This service enables
event-driven architecture, responding dynamically to real-time health data and ensur-
ing timely interventions fulfilling TR 10.1 . Lambda’s automatic scalability aligns
seamlessly with the fluctuating demands of our application, optimizing performance
without manual intervention and ensuring cost efficiency. Supporting multiple pro-
gramming languages and integrating seamlessly with various AWS services, Lambda
accelerates development cycles, promoting rapid prototyping, testing, and deployment
of new features. Operating without the need for server management, Lambda thrives
in an event-driven architecture, dynamically responding to real-time health data and

14

https://aws.amazon.com/sqs/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/sns
https://aws.amazon.com/lambda/

enabling timely interventions. In the realm of healthcare technology, Lambda’s capabil-
ities form a responsive, scalable, and developer-friendly framework, aligning perfectly
with the dynamic processing needs of health data from wearable devices.

6. AWS Key Management Service (KMS)
https://aws.amazon.com/kms/

AWS Key Management Service makes it easy to create and manage cryptographic keys,
controlling their use across a wide range of AWS services and in our application. KMS
ensures the security of sensitive healthcare data by providing robust encryption key
management, safeguarding patient records, and other confidential information.

7. AWS Systems Manager Parameter Store
https://aws.amazon.com/systems-manager/features/parameter-store

AWS Systems Manager Parameter Store provides a centralized store to manage con-
figuration data. This allows us to separate the configuration data from our code. It
centralizes configuration settings, making it easier to manage and update parameters
related to health data processing, analytics, and system behavior.

8. AWS Glue
https://aws.amazon.com/glue/

AWS Glue is a serverless data preparation service that makes it easy to Extract, Trans-
form, and Load (ETL) of health data, ensuring data consistency and readiness for an-
alytics and reporting. An AWS Glue job encapsulates a script that reads, processes,
and then writes data to a new schema. This solution uses Python 3.6 Glue Jobs for
ETL processing.

9. Amazon Athena
https://aws.amazon.com/athena/

Amazon Athena is an interactive query service that can query data in S3 using stan-
dard SQL queries using tables in a Glue Data Catalog. The data can be accessed via
JDBC for further processing, such as displaying in BI dashboards. It empowers health-
care providers and data scientists to derive insights, perform exploratory analysis, and
generate reports to support informed decision-making.

10. Amazon CloudWatch
https://aws.amazon.com/cloudwatch/

Amazon CloudWatch is a monitoring and observability service that provides you with
data and actionable insights to monitor your applications, respond to system-wide
performance changes, etc. The logs from AWS Glue Jobs and Lambda functions are
saved in CloudWatch logs.

11. AWS Sagemaker
https://aws.amazon.com/sagemaker/

AWS Sagemaker is a fully managed machine learning service providing developers and
data scientists with the tools to build, train, and deploy machine learning models at
scale. SageMaker becomes instrumental in streamlining the entire machine learning
workflow – from preparing health data to deploying predictive models. The platform

15

https://aws.amazon.com/kms/
https://aws.amazon.com/systems-manager/features/parameter-store
https://aws.amazon.com/glue/
https://aws.amazon.com/athena/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/sagemaker/

offers a comprehensive set of integrated tools and capabilities, providing a robust foun-
dation for harnessing machine learning insights to enhance health monitoring and user
experiences.

12. Amazon Elastic Compute Cloud (EC2)
https://aws.amazon.com/ec2/

Amazon Elastic Compute Cloud (EC2) instances provide scalable and resizable com-
pute capacity, hosting the backend services that process health data, ensuring respon-
siveness, and accommodating varying workloads.

13. Amazon API Gateway
https://aws.amazon.com/api-gateway/

Amazon API Gateway plays a crucial role in our application by facilitating seamless
communication between different components. It allows for secure and efficient data ex-
change, ensuring that health data flows smoothly between wearables, backend services,
and other integrated systems.

14. AWS CloudTrail
https://aws.amazon.com/cloudtrail/

AWS CloudTrail becomes an essential tool for auditing and monitoring API calls in our
healthcare monitoring application. It provides a detailed history of activities, aiding
in compliance adherence, and enhancing security by tracking changes and access to
sensitive health data.

15. AWS IoT Core
https://aws.amazon.com/iot-core/

AWS IoT Core enables secure and efficient communication between wearable devices
and the cloud. It ensures that real-time health data from IoT devices is reliably and
securely transmitted, supporting continuous monitoring.

16. AWS Identity and Access Management (IAM)
https://aws.amazon.com/iam/

AWS Identity and Access Management (IAM) is an essential component for addressing
Tenant Requirement 12.1 (TR 12.1) in our healthcare application, specifically per-
taining to wearable data. IAM provides a robust framework for establishing distinct
identities for tenants, ensuring user isolation and preventing unauthorized access to sen-
sitive healthcare information. Its fine-grained access policies allow for customization
of permissions, accommodating the diverse needs of tenants within a shared infras-
tructure while maintaining stringent security standards. IAM’s seamless integration
with AWS services ensures that only authenticated and authorized users can access
specific resources, enhancing data privacy and compliance with healthcare regulations.
Moreover, IAM’s auditing and logging features contribute to TR 12.1 by creating an au-
ditable record of tenant activities, ensuring accountability and facilitating compliance
audits. In the realm of wearable data, IAM plays a crucial role in securely managing
each tenant’s access, promoting overall security, user experience, and accountability
within the healthcare application.

16

https://aws.amazon.com/ec2/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/iam/

17. Amazon Kinesis
https://aws.amazon.com/kinesis/

Amazon Kinesis is instrumental for handling real-time data streaming in our healthcare
monitoring application. It enables the ingestion and processing of continuous health
data from wearables, supporting real-time analytics and ensuring that insights are
derived promptly for timely interventions or notifications.

17

https://aws.amazon.com/kinesis/

4 DESIGN DRAFT

4.1 The basic building blocks of the design

1. Amazon Simple Storage Service (Amazon S3) S3 serves as a secure repository for
health wearables data, allowing efficient organization. Create dedicated S3 buckets for
each user to store raw health metrics. Enable versioning to track changes, and leverage
S3 lifecycle policies for cost-effective data management.

2. Amazon Simple Queue Service (SQS) SQS manages asynchronous tasks for health
data processing. Queue up tasks for data validation and transformation, ensuring
seamless communication between wearables and backend systems. Use SQS to decouple
components, allowing for scalable and fault-tolerant processing.

3. Amazon DynamoDB DynamoDB stores structured health data in real-time. Design
tables to store user profiles, wearable device information, and continuous monitoring
metrics. Leverage DynamoDB’s low-latency access for real-time analytics, supporting
quick retrieval of individual and aggregated health metrics.

4. Amazon Simple Notification Service (Amazon SNS) SNS enables real-time no-
tifications for health events. Set up topics for critical health alerts and user updates,
providing timely information to wearables users and healthcare providers. Integrate
SNS into the wearables platform to deliver immediate and relevant notifications.

5. AWS Lambda Lambda functions process health data in a serverless manner. Use
functions to normalize and analyze incoming data, trigger notifications for abnormal
metrics, and execute real-time analytics. Integrate Lambda with other AWS services
to create a responsive and scalable health wearables processing pipeline.

6. AWS Key Management Service (KMS) KMS manages encryption keys to secure
sensitive health wearables data. Integrate KMS with S3 and DynamoDB to encrypt
data at rest and in transit, ensuring compliance with security standards. Use KMS to
control access to encrypted health data and manage key rotation for enhanced security.

7. AWS Systems Manager Parameter Store Parameter Store securely stores config-
uration parameters. Store API keys, service endpoints, and other sensitive information.
Integrate Parameter Store into the health wearables application to centralize and man-
age configuration details securely, enhancing overall system security.

8. AWS Glue Glue performs ETL processes on health wearables data. Extract raw data
from wearables, transform it into a standardized format, and load it into a data store
for analysis. Use Glue to automate and streamline the data transformation process,
supporting data-driven insights and reporting.

9. Amazon Athena Athena facilitates ad-hoc querying of health wearables data stored
in S3. Data analysts can run SQL queries on the raw data without complex setup,
enabling on-demand analysis. Integrate Athena with visualization tools for interactive
exploration and extraction of valuable insights from wearables data.

18

10. Amazon CloudWatch CloudWatch monitors health wearables metrics for perfor-
mance and reliability. Set up alarms to trigger notifications for abnormal system
behavior, ensuring proactive issue resolution. Use CloudWatch to gain insights into
system performance, detect potential bottlenecks, and optimize the health wearables
platform for a seamless user experience.

19

4.2 Top-level, informal validation of the design

1. Optimizing Performance and Scalability (TR1.1):
Argument: The design incorporates a scalable architecture, utilizing cloud services
that allow dynamic resource allocation. Performance optimization is achievable through
continuous monitoring, identifying bottlenecks, and fine-tuning the system to accom-
modate concurrent users and handle large data volumes.

2. Ensuring Security and Privacy Measures (TR2.1):
Argument: End-to-end encryption for data at rest and in transit is a fundamental
part of the design. By following industry-standard security protocols and compliance
regulations, such as HIPAA for healthcare data, the system ensures robust security.
User authentication and authorization mechanisms are implemented to control access
and protect sensitive information.

3. Implementing Redundancy for High Availability (TR3.1):
Argument: Redundant systems are integrated into the design to minimize downtime.
This includes failover mechanisms, load balancing, and redundancy in critical compo-
nents, ensuring continuous operations and high availability.

4. Promoting Accessibility and Inclusivity (TR3.2):
Argument: The design emphasizes accessibility features, complying with standards
to accommodate users with disabilities. Multilingual support is provided to cater to a
diverse user base, promoting inclusivity and ensuring a positive user experience for all.

5. Monitoring and Optimizing Cloud Resource Utilization (TR4.1):
Argument: The implementation includes robust monitoring tools that track resource
usage in real-time. This allows for proactive optimization of cloud resource allocation,
ensuring cost efficiency and effective utilization of resources.

6. Empowering Data Processing and Analysis (TR5.1):
Argument: The design leverages powerful computational resources for real-time data
processing and analysis. Machine learning algorithms are integrated to enable predic-
tive analytics and trend analysis, while data visualization tools enhance the interpre-
tation of health metrics.

7. Conducting Regular Compliance Audits (TR6.1):
Argument: The system incorporates features for automated compliance checks and
periodic audits. This ensures continuous adherence to industry-specific regulations and
standards, providing a robust framework for data security and legal compliance.

8. Enhancing Data Collection and Transmission Capabilities (TR7.1 and TR7.2):
Argument: The design prioritizes secure and encrypted data transmission from wear-
able devices to the cloud. Scalable cloud storage solutions, resilient backup mechanisms,
and data redundancy across multiple geographic locations are implemented to handle
the expanding volume of health data and ensure data durability.

20

9. Facilitating Device Compatibility and Integration (TR8.1 and TR8.2):
Argument: The design ensures seamless device integration with various operating
systems through the development of APIs. Standard data formats, such as FHIR, are
adopted to foster interoperability with electronic health record (EHR) systems and
other healthcare software.

10. Developing and Testing Disaster Recovery Plan (TR9.1):
Argument: A comprehensive disaster recovery plan is developed and regularly tested.
This ensures that in the event of a disaster or system failure, the recovery process is
well-defined and can be executed effectively, minimizing downtime and data loss.

11. Enable Real-time Analytics and Machine Learning (TR10):
Argument: The system leverages advanced real-time analytics and machine learn-
ing techniques to optimize wearable health monitoring. Continuous analysis of health
data and personalized recommendations are facilitated through well-implemented algo-
rithms.

12. Establish Monitoring and Logging Mechanisms (TR11):
Argument: The design incorporates robust monitoring and logging mechanisms, se-
curely capturing and storing user data activities. Encryption during transit and at
rest ensures the confidentiality and integrity of the logged data, supporting auditing,
troubleshooting, and compliance purposes.

13. Implementing tenant identification mechanisms (TR12):
Argument: The design ensures robust Tenant Identification Mechanisms by imple-
menting strong authentication and authorization protocols. This guarantees the secure
isolation of users, preserving the confidentiality and integrity of sensitive healthcare
data. The system allows for customization within the shared infrastructure, meeting
the unique needs of healthcare tenants while adhering to stringent security standards.

4.3 Action items and rough timeline

skipped

21

5 THE SECOND DESIGN

5.1 Use of the Well-Architected framework

In the dynamic landscape of health wearables and cloud integration, the AWSWell-Architected
Framework emerges as a guiding force, ensuring the seamless development and operation of
cutting-edge solutions that prioritize security, reliability, performance, and cost efficiency.
Tailored to the specific needs of health wearables, each pillar within the framework offers
targeted best practices:

1. Operational Excellence

• Automate wearables’ operations to enhance efficiency.

• Annotate documentation for clear insights into wearables’ functionalities.

• Embrace agile development with frequent, reversible changes.

• Continuously refine operational procedures for optimal performance.

• Anticipate and plan for potential disruptions, ensuring wearables’ resilience.

2. Security

• Establish a robust identity foundation for secure user access to health data.

• Enable traceability for comprehensive monitoring of wearables’ activities.

• Apply the principle of least privilege to protect sensitive health information.

• Regularly audit security controls to ensure compliance with healthcare standards.

• Safeguard data in transit and at rest, prioritizing patient privacy.

• Implement measures to restrict unauthorized access to wearable-generated health
data.

• Develop strategies to respond effectively to security events in real-time.

3. Reliability

• Rigorously test recovery procedures to ensure continuous health data availability.

• Automate recovery processes to minimize downtime and ensure wearables’ relia-
bility.

• Scale horizontally to meet increasing demand for health monitoring services.

• Utilize automation to efficiently manage changes in the wearables’ ecosystem.

• Implement dynamic scaling mechanisms to avoid capacity guesswork.

4. Performance Efficiency

• Embrace serverless architectures for streamlined and cost-effective wearables.

• Experiment with different cloud instance types to optimize health data processing.

22

• Implement caching strategies for rapid retrieval of patient health information.

• Distribute health data processing effectively to enhance wearables’ efficiency.

• Optimize cloud resources for cost efficiency without compromising wearables’ per-
formance.

5. Cost Optimization

• Adopt a consumption model to optimize costs for health wearables.

• Continuously measure overall efficiency, identifying areas for cost improvement.

• Eliminate unnecessary expenditures on non-differentiated tasks, ensuring cost-
effectiveness.

• Analyze and attribute expenditure to optimize the management of wearables’
costs.

The framework’s design principles encourage testing systems at the scale of health wear-
ables, automation with experimentation in mind, consideration of evolutionary architectures,
data-driven decision-making, and improvement through simulated ”game days.” Further-
more, the framework supports a continuous review process that aligns with AWS internal
processes, establishes milestones in the product life cycle, adheres to hygiene practices, facil-
itates effective meetings, addresses resistance, and resolves thematic issues. This approach
creates a collaborative environment, empowering team members to take ownership of the
quality of the health wearables and cloud integration architecture throughout the project’s
life cycle.

5.2 Discussion of pillars

5.2.1 Operational Excellence

The Operational Excellence pillar within the AWS Well-Architected Framework is a crucial
aspect of building and maintaining workloads on the AWS Cloud. It is centered around en-
suring the effective support of development, efficient operation of workloads, and continuous
improvement processes to deliver maximum business value.

Design Principles:

1. Perform operations as code:

• Apply engineering discipline to define entire workloads and operations procedures
as code.

• Update workloads with code, automating operations execution in response to
events.

• Limit human error and ensure consistent responses to events through code-based
operations.

2. Make frequent, small, reversible changes:

23

• Design workloads for regular, small, and reversible updates to minimize potential
failures.

• Incrementally make changes that can be easily reversed, minimizing customer
impact.

3. Refine operations procedures frequently:

• Continuously improve operations procedures in tandem with workload evolution.

• Set up regular game days to review and validate the effectiveness of procedures.

4. Anticipate failure:

• Conduct ”pre-mortem” exercises to identify potential failure sources and mitigate
them.

• Test failure scenarios and validate understanding of their impact.

• Schedule regular game days to test workloads and team responses to simulated
events.

5. Learn from all operational failures:

• Drive improvement by sharing lessons learned from all operational events and
failures.

• Foster a culture of continuous learning and improvement across teams and the
organization.

Best Practices:

1. Organization:

• Define business objectives and organize work to support the achievement of out-
comes.

• Implement services for integration, deployment, and delivery automation to facil-
itate beneficial changes.

2. Prepare:

• Evaluate internal and external customer needs to determine where to focus efforts.

• Understand and manage risks inherent in the operation of workloads.

3. Operate:

• Ensure teams have shared understanding, defined priorities, and clear responsibil-
ities.

• Use runbooks and playbooks for routine activities and issue resolution.

4. Evolve:

24

• Dedicate work cycles to continuous incremental improvements.

• Perform post-incident analysis of customer impacting events and communicate
lessons learned.

• Regularly evaluate and prioritize opportunities for improvement.

5.2.2 Reliability

The Reliability pillar encompasses the ability of a workload to perform its intended function
correctly and consistently when it’s expected to. This includes the ability to operate and test
the workload through its total lifecycle. This paper provides in-depth, best practice guidance
for implementing reliable workloads on AWS.

Design Principles

1. Automatically recover from failure:

• Monitor a workload for key performance indicators (KPIs) and trigger automation
when a threshold is breached.

• Use KPIs that measure business value for automatic notification and tracking of
failures.

• Implement automated recovery processes to work around or repair failures, with
more sophisticated automation for anticipating and remediating failures.

2. Test recovery procedures:

• In the cloud, test how your workload fails and validate recovery procedures.

• Use automation to simulate different failures or recreate scenarios to expose failure
pathways for testing and fixing before real failure scenarios occur.

3. Scale horizontally to increase aggregate workload availability:

• Replace one large resource with multiple small resources to reduce the impact of
a single failure.

• Distribute requests across multiple, smaller resources to avoid a common point of
failure.

4. Stop guessing capacity:

• Monitor demand and workload utilization in the cloud.

• Automate the addition or removal of resources to maintain optimal levels and
satisfy demand without over- or under-provisioning.

5. Manage change in automation:

• Make changes to infrastructure using automation.

• Track and review changes to automation to ensure effective change management.

25

Best Practices

1. Foundations:

• Ensure foundational requirements influencing reliability are in place before archi-
tecting any system.

• With AWS, foundational requirements like network bandwidth are often incorpo-
rated or can be addressed as needed.

2. Workload Architecture:

• Design a workload architecture of distributed systems to prevent and mitigate
failures.

• Choose scalable and reliable architectures such as service-oriented architecture
(SOA) or microservices architecture.

3. Change Management:

• Anticipate and accommodate changes to workload or environment for reliable
operation.

• Monitor workload behavior and automate responses to key performance indicators
(KPIs).

4. Failure Management:

• Be aware of and take action to avoid the impact of failures on availability.

• Use automation to react to monitoring data and replace failed resources in a cost-
effective manner.

26

5.3 Use of Cloudformation diagrams

Trigger Transformation

Amazon S3

Amazon
CloudWatch Logs

Simple Notification
Service

read transformed data

Amazon Athena

Transformed Data S3
Bucket

Amazon API
Gateway

Lambda
function

move source data to backup

Amazon
QuickSight

Write Transformed Data

AWS Glue Data Catalog

Data Scientists/
Analysts

AWS Glue Job

Send notifications

AWS Kinesis

AWS IoT
Core

AWS IAM

Ingest Realtime Data

Simple Query
Service

Wearable
Device

desktop

Monitor logs

Push
Notification
Service

AWS Cloud

Processed Bucket

Amazon
DynamoDB

Job Status

Report Error

AWS Cloudwatch

Amazon
SageMaker

Figure 1: CloudFormation Diagram

In our health wearable and cloud integration project, the architectural design meticulously
addresses each Technical Requirement (TR) to ensure optimal performance, security, and
reliability. Users initiate login requests, which are managed through AWS Identity and
Access Management (IAM), providing roles, policies, and logging capabilities, aligning with
TR1. User data is stored and encrypted using AWS Key Management Service (KMS) and
Amazon RDS for relational database storage, effectively covering TRs 7.2, 10, and 11.

Real-time health data from wearable devices is ingested through an API gateway and
Lambda function, utilizing Amazon API Gateway and AWS Lambda. The data is then
processed using Amazon Kinesis Data Streams and a Lambda function, transforming and
enriching it before saving to DynamoDB tables, addressing TRs 5.1, 8.1, and 8.2.

Notifications are facilitated through Amazon Pinpoint, connected via a Lambda function,
ensuring users receive timely alerts in compliance with TR 7.1. CloudWatch is employed for
logging and monitoring, providing insights into system events, supporting TRs 4.1 and 6.1.
Lastly, an Elastic Load Balancer (ELB) is utilized to distribute traffic across web servers,
ensuring high availability and scalability, aligning with TRs 3.1 and 3.2. This comprehensive
architecture ensures a robust and efficient system for health wearables and cloud integration,
meeting the specified Technical Requirements.

27

5.4 Validation of the design

In the health wearables and cloud integration project, the design validation encompasses
several key components ensuring robustness and efficiency:

1. User login requests are processed through AWS Identity and Access Management (IAM)
for tenant identification and authorization. AWS Key Management Service (KMS)
ensures encryption for protecting sensitive user data.

2. User data is securely stored in Amazon RDS, employing a relational database format
for efficient management and retrieval.

3. Amazon Kinesis Data Streams is employed to ingest real-time health data from third-
party providers.

4. AWS Lambda plays a crucial role in transforming and enriching the health data using
configuration information stored in Amazon DynamoDB.

5. AWS AppSync notifies subscribers about new health events, utilizing DynamoDB as a
data source for the GraphQL API.

6. An Ingestion API stack, facilitated by Amazon API Gateway, provides a REST API
for seamless data ingestion into Kinesis Data Streams.

7. The Ingestion API Poller stack, powered by an AWS Step Functions workflow and
Lambda function, efficiently pulls data from external APIs and ingests it into Kinesis
Data Streams.

8. Lambda collaborates with Amazon Pinpoint to create segments and campaigns, allow-
ing for targeted notifications based on specific health criteria.

9. DynamoDB is utilized by Lambda to manage health event notifications, ensuring effi-
cient tracking and processing.

10. CloudWatch serves as a robust tool for collecting, monitoring, and analyzing log files,
including those related to security events. AWS Lambda facilitates event tracking and
reaction based on log analysis.

11. AWS Elastic Load Balancer (ELB) is implemented to distribute traffic across vari-
ous servers, ensuring high availability and supporting automatic scaling for increased
demand.

12. An Amazon S3 bucket hosts the static web application, complemented by an Amazon
CloudFront distribution for efficient content delivery. The web application seamlessly
interacts with AWS AppSync for real-time health data queries and subscriptions.

28

This is how our solution align with the mentioned TRs-

1. Optimizing Performance and Scalability (TR1.1)

• The design incorporates a scalable architecture by leveraging cloud services that
allow dynamic resource allocation. Performance optimization is achieved through
continuous monitoring, identifying and addressing potential bottlenecks, ensuring
the system can accommodate concurrent users and handle large data volumes.

2. Ensuring Security and Privacy Measures (TR2.1)

• Security measures are paramount in the design. End-to-end encryption for data at
rest and in transit is implemented, ensuring the confidentiality of sensitive health
data. The system adheres to industry-standard security protocols, such as HIPAA,
and employs robust user authentication and authorization mechanisms to control
access.

• Utilize IAM to manage access to AWS services securely. Define roles, permissions,
and policies to control who can access what resources.

• Leverage Amazon VPC to isolate resources, create private networks, and control
inbound and outbound traffic, ensuring a secure and private environment.

3. Implementing Redundancy for High Availability (TR3.1)

• Redundant systems are integrated to minimize downtime and ensure continuous
operations. Failover mechanisms and load balancing strategies are in place to
enhance high availability and reliability.

4. Monitoring and Optimizing Cloud Resource Utilization (TR4.1)

• Robust monitoring tools are implemented to track resource usage in real-time.
This allows for proactive optimization of cloud resource allocation, ensuring cost
efficiency and effective utilization of resources, meeting the objective of optimizing
cloud resource utilization.

• AWS Auto Scaling monitors our application and automatically adjusts capacity
to maintain steady, predictable performance at the lowest possible cost. It works
in conjunction with Amazon CloudWatch to dynamically scale resources based on
predefined metrics.

5. Empowering Data Processing and Analysis (TR5.1)

• Powerful computational resources are deployed for real-time data processing and
analysis. Machine learning algorithms are integrated to enable predictive analytics
and trend analysis, while data visualization tools enhance the interpretation of
health metrics.

29

• Amazon QuickSight empowers data processing and analysis by providing an in-
tuitive, user-friendly interface for creating interactive dashboards and performing
ad-hoc analysis on versatile AWS data sources. With built-in machine learning
capabilities and cost-effective pay-per-session pricing, it enables organizations to
derive actionable insights efficiently and collaboratively.

6. Conducting Regular Compliance Audits (TR6.1)

• The system incorporates features for automated compliance checks and peri-
odic audits. This ensures ongoing compliance with industry-specific regulations,
demonstrating a commitment to data security and legal compliance.

7. Enhancing Data Collection and Transmission Capabilities (TR7.1 and TR7.2)

• The design prioritizes secure and encrypted data transmission from wearable de-
vices to the cloud. Scalable cloud storage solutions, resilient backup mechanisms,
and data redundancy across multiple geographic locations are implemented to
handle the expanding volume of health data and ensure data durability.

• AWS IoT Core is designed to securely connect devices and ingest data from the
Internet of Things (IoT) devices, making it ideal for scenarios where you need to
enhance data collection and transmission capabilities from a multitude of devices.
It provides capabilities for device management, security, and scalable communica-
tion.

• AWS Glue jobs are also used for data transformation, preparation, and ETL (Ex-
tract, Transform, Load) processes.

8. Facilitating Device Compatibility and Integration (TR8.1 and TR8.2)

• The design ensures seamless device integration with various operating systems
through the development of APIs. Standard data formats, such as FHIR, are
adopted to foster interoperability with electronic health record (EHR) systems
and other healthcare software.

9. Developing and Testing Disaster Recovery Plan (TR9.1)

• A comprehensive disaster recovery plan is developed and regularly tested. This
ensures that in the event of a disaster or system failure, the recovery process is
well-defined and can be executed effectively, minimizing downtime and data loss.

10. Enable Real-time Analytics and Machine Learning (TR10)

• The system leverages advanced real-time analytics and machine learning tech-
niques to optimize wearable health monitoring. Continuous analysis of health
data and personalized recommendations are facilitated through well-implemented
algorithms.

30

• AWS SageMaker empowers real-time analytics and machine learning by stream-
lining model development and deployment, facilitating low-latency inference for
immediate insights and predictions. Its fully managed environment accelerates
the end-to-end machine learning workflow.

11. Establish Monitoring and Logging Mechanisms (TR11)

• Robust monitoring and logging mechanisms are implemented, securely capturing
and storing user data activities. AWS CloudWatch provides robust monitoring ca-
pabilities, allowing for the collection and tracking of metrics, logs, and events from
various AWS resources and applications. This service ensures real-time insights
into system health and performance.

12. Tenant Identification Mechanisms (TR12)

• IAM facilitates secure tenant identification by providing a robust framework for
establishing distinct identities, enabling fine-grained access control, and ensuring
customized permissions within a shared infrastructure in our healthcare applica-
tion.

31

5.5 Design principles and best practices used

1. Design for Automation (Principle 1):

• Continuous Health Data Analysis: Automate the analysis of health data generated
by wearables for real-time insights and personalized recommendations.

• Automated Data Transmission: Implement automation for secure and encrypted
data transmission from wearables to the cloud platform.

2. Be Smart with State (Principle 2):

• Stateless Wearable Integration: Design the integration between wearables and the
cloud to be stateless wherever possible, allowing for scalability, repair, and efficient
updates.

3. Favor Managed Services (Principle 3):

• Managed Cloud Storage: Leverage managed cloud storage solutions for handling
the expanding volume of health data from wearables.

• Managed Machine Learning Services: Utilize managed machine learning services
for predictive analytics and trend analysis on health metrics.

4. Practice Defense in Depth (Principle 4):

• End-to-End Encryption: Implement end-to-end encryption for data at rest and in
transit, ensuring a layered defense approach for protecting sensitive health data.

• Authentication for Wearable Integration: Apply strong authentication measures
between wearable devices and the cloud to secure the data transmission.

5. Always Be Architecting (Principle 5):

• Continuous Improvement in Health Monitoring: Embrace the idea of continuous
improvement in the health monitoring system architecture, adapting to evolving
healthcare needs and technological advancements.

6. Architect for Multi-Tenancy(Best practices 1):

• Efficient Use of Wearable Resources: Architect the system to efficiently serve
multiple users’ health data from wearables, considering shared resources while
ensuring data security and privacy.:

7. Separate Application and Resource Logging (Best practices 2):

• Distinct Logging for Health Metrics: Implement distinct logging layers for appli-
cation logging (health metrics from wearables) and resource logging (cloud infras-
tructure) to facilitate monitoring, troubleshooting, and automated recovery.

32

5.6 Tradeoffs revisited

According to Reference 5.2, ““Even Swaps: A Rational Method for Making Trade-offs”
introduces the concept of even swaps as a practical approach to decision-making in situations
involving multiple objectives and alternatives. The article emphasizes that making wise
trade-offs is a crucial and challenging aspect of decision-making. The even-swap method
is described as a systematic way to navigate trade-offs by forcing individuals to assess the
value of one objective in terms of another. By iteratively adjusting the values of different
alternatives, the method helps simplify complex decisions, allowing decision-makers to focus
on the most critical aspects and make informed choices. The process involves creating a
consequences table, eliminating dominated alternatives, and then making even swaps to
progressively narrow down the options until a clear choice emerges. The authors argue that
the even-swap method provides a coherent framework for decision-makers to systematically
evaluate and compare alternatives based on their objectives.

1. Prioritize Scalability over Cost Optimization. (TR1.1)
Rationale: The health wearables project focuses on real-time monitoring of diverse
health metrics. Prioritizing scalability ensures the system can handle a growing user
base and increasing data volume effectively. Although scalability might lead to in-
creased costs, the decision aligns with the project’s commitment to providing a scalable
and responsive health monitoring platform, justifying the tradeoff for optimal scalabil-
ity.

2. Balance Data Transfer frequency with the need for Low Latency. (TR7.1)
Rationale: The project emphasizes real-time health data transfer for prompt analysis
and decision-making. Striking a balance between data transfer frequency and low la-
tency is crucial to maintain the responsiveness of the health monitoring system. The
tradeoff decision aims to optimize data transfer for timely insights while ensuring min-
imal latency for user interactions.

3. Achieve a Balance between Data Storage for Analysis and Ensuring Privacy. (TR7.2)
Rationale: Storing historical health data supports in-depth analysis for insights. How-
ever, it conflicts with stringent data privacy requirements. The tradeoff decision seeks
to find an equilibrium, allowing for sufficient data storage to facilitate analysis while
prioritizing privacy measures. This aligns with the project’s commitment to regulatory
compliance and ethical data handling.

4. Emphasize Security Measures over Open APIs for Interoperability. (TR8.1, TR8.2)
Rationale: While open APIs enhance interoperability, the health wearables project
deals with sensitive health data. Prioritizing security measures over open APIs is
crucial to safeguard against potential threats and unauthorized access. This tradeoff
aligns with the project’s primary focus on ensuring the confidentiality and integrity of
health information.

5. Implement Redundancy for High Availability, Balancing Costs. (TR3.1)
Rationale: High availability is paramount in a health monitoring system. While re-
dundancy contributes to reliability, it can incur additional costs. The tradeoff decision

33

involves optimizing redundancy to ensure system reliability without compromising on
cost-effectiveness. This aligns with the project’s goal of providing a resilient and cost-
efficient health monitoring solution.

Alternative
tradeoff

Objective Positive Con-
sequence

Negative Con-
sequence

Decision

1. Prioritize
Scalability
over Cost Op-
timization.
(TR1.1)

Increased Scala-
bility

Effective han-
dling of growing
user base and
data volume

Potential in-
creased costs

Aligns with
commitment
to a scalable
and responsive
health monitor-
ing platform

2. Balance
Data Transfer
frequency
with the
need for Low
Latency.
(TR7.1)

Optimized Data
Transfer

Timely insights
from real-time
data transfer

Possible com-
promise on
latency for user
interactions

Maintains re-
sponsiveness of
health monitor-
ing system

3. Achieve
a Balance
between Data
Storage for
Analysis
and Ensur-
ing Privacy.
(TR7.2)

Equilibrium in
Data Storage

In-depth analy-
sis of historical
health data

Addressing
conflicts with
stringent data
privacy require-
ments

Prioritizes reg-
ulatory compli-
ance and ethical
data handling

4. Empha-
size Security
Measures
over Open
APIs for
Interoperabil-
ity. (TR8.1,
TR8.2)

Enhanced Secu-
rity

Protection
against threats
and unautho-
rized access

Potential lim-
itation in
interoperability
with open APIs

Ensures confi-
dentiality and
integrity of
health informa-
tion

5. Implement
Redundancy
for High
Availability,
Balanc-
ing Costs.
(TR3.1)

Optimized
Redundancy

Improved sys-
tem reliability
and high avail-
ability

Additional costs
associated with
redundancy

Aligns with the
goal of providing
a resilient and
cost-efficient
health monitor-
ing solution

34

5.7 Discussion of an alternate design

skipped

35

6 KUBERNETES EXPERIMENTATION

6.1 Experiment Design

For validating our design we chose two experiments that align with our TR’s. We chose TR:
TR 1.1 - Optimizing Performance and Scalability and TR: TR 4.1 Monitoring
and Optimizing Cloud Resource Utilization to base our experiments on.

For experimentation on the first TR (TR 1.1 - Optimizing Performance and Scalability),
we chose Kubernetes and its autoscaling functionality to enhance our application’s perfor-
mance and scalability. Kubernetes, with its robust orchestration capabilities, allows us to
dynamically adjust the number of pod replicas based on real-time metrics like CPU utiliza-
tion. The integration of HorizontalPodAutoscaler (HPA) enables the system to automatically
scale in response to varying workloads, ensuring optimal resource utilization. This approach
not only enhances our application’s responsiveness during peak loads but also contributes
to cost-effectiveness by efficiently allocating resources. The experiment focuses on observ-
ing HPA events and fine-tuning the autoscaler’s behavior, providing valuable insights into
the dynamic scaling capabilities of Kubernetes and its impact on overall system performance.

Setting up Kubernetes:
We initiated the process by deploying a dummy web server application on Kubernetes,

leveraging the power of container orchestration. The Deployment YAML file encapsulated
our application’s desired state, ensuring smooth scalability. For this experiment, we chose to
go with Minikube as our Kubernetes environment due to its lightweight and user-friendly na-
ture, making it particularly well-suited for local testing and development purposes. Minikube
provides a single-node Kubernetes cluster that runs on a local machine, offering an easy and
quick way to set up a Kubernetes environment. This choice allows us to replicate a Kuber-
netes environment in a controlled setting, facilitating experimentation with the deployment
and scaling aspects of our application. We can thus show our experiment’s objectives and ob-
tain meaningful insights into the performance and scalability optimizations achieved through
Kubernetes and Horizontal Pod Autoscaler.

Implementing HPA for Dynamic Scaling:
Recognizing the need for dynamic scaling, we created a Horizontal Pod Autoscaler (HPA)

YAML file. This intricate file specified the scaling metrics, such as CPU utilization, and set
target values. With a defined scale range, the system could autonomously adjust the number
of pod replicas based on demand.

Load Generation on Minikube:
To simulate real-world scenarios and generate a controlled load on our web server, we

employed a declarative YAML file named ”load.yaml.” This YAML file, defined with the
apiVersion: apps/v1 and kind: Deployment, orchestrates the deployment of a load gener-
ator within our Kubernetes environment. The deployment is named ”load-generator” and
is assigned the label ”app: load.” With a specification of 10 replicas, the load generator
is configured to create and manage ten instances concurrently. The container’s command

36

orchestrates a continuous loop where the container executes a wget command to retrieve
content from the web server. This effectively simulates a persistent and distributed load on
the server, reflecting real-world scenarios where multiple users continuously interact with our
server for requesting analysis of their health data. Overall, this ”load.yaml” file enables us
to precisely control and replicate diverse load scenarios for comprehensive testing and opti-
mization of our application’s performance and scalability within the Kubernetes environment.

Observing Autoscaler Events:
Keen on understanding the impact of the autoscaler, we consistently monitored events

related to the Horizontal Pod Autoscaler (HPA) in our Kubernetes deployment. The ob-
served status in the Kubernetes Autoscaler revealed insightful behavior. Initially, with no
load, Kubernetes maintained the number of replica containers as specified in the deployment
(1 in this case). Upon initiating the load generator deployment, the gradual increase in load
from 0% to 9% did not trigger the autoscaler to scale up the number of pods. This was due
to the CPU utilization matching the specified threshold of 50%. Similarly, the autoscaler did
not scale down the number of replicas, as it’s configured to always maintain a minimum of 1
replica based on the deployment settings.

The real-time monitoring of these events using the ”kubectl get hpa cpu-autoscale
–watch” command provided a clear picture of how the autoscaler responded to varying levels
of load, showcasing its intelligent decision-making based on the defined utilization thresholds
and deployment constraints. The corresponding HPA configuration, specified in the YAML
file, outlined these parameters, emphasizing the autoscaler’s role in dynamically adjusting
the number of replicas to optimize resource utilization while ensuring the application’s avail-
ability and performance.

For the second Technical Requirement (TR 4.1: Monitoring and Optimizing Cloud
Resource Utilization), we opted to utilize Locust for Load Generation and Load Testing.
Locust is an open-source, distributed load testing tool that allows us to simulate realistic user
scenarios and assess the performance of our application under varying levels of traffic. For
our application of healthcare data with varying loads of real time data from various users,
this TR is extremely important.

Inputs and Expected Outputs: Thus, my inputs are the following 3 yaml files: php-
apache.yaml which includes a deployment and a web service, load.yaml which generated the
load by requesting userdata from the service and a hpa.yaml file which uses the kubernetes
metric server which collects resource metrics from the cluster and exposes those metrics
through the API service. By setting the resource limit in the hpa.yaml file we will be able
to observe the autoscaling functionality. My expected outputs are the autoscaler working to
reduce the CPU utilization if it crosses more than 50%.

37

6.2 Workload generation with Locust

Locust allows us to simulate realistic user behavior, mimicking the diverse interactions that
users might have with our healthcare application through wearable devices. This is particu-
larly crucial in a healthcare setting where system responsiveness is paramount. By scripting
scenarios that replicate different usage patterns, we can assess how the application performs
under various loads, ensuring it can seamlessly handle the potential influx of data from wear-
able devices.

Locust significantly contributes to the monitoring aspect of TR 4.1 by generating con-
trolled loads on our application. With Locust scripts, we simulate diverse scenarios, includ-
ing peak usage and unusual patterns, observing how our application behaves under different
conditions. Locust’s ability to generate scalable loads provides a comprehensive view of per-
formance, identifying potential bottlenecks or latency issues during data transmission from
wearable devices. This essential load testing verifies the application’s stability, responsive-
ness, and ability to handle concurrent requests, ensuring a smooth user experience and reliable
data processing. Locust’s reporting and monitoring features enable fine-tuning for optimal
resource utilization, contributing to the efficiency and reliability of our healthcare data sys-
tem. In essence, Locust plays a critical role in validating and optimizing the performance
of our wearable device application to meet stringent healthcare data processing requirements.

By using Locust, We were able to simulate the load generation functionality which we
were previously generating through the load.yaml file which retrieves content from our server
using 10 replicas. Similarly, we were able to use Locust for specifying the number of users
and the swarm rate and also specified the Ip address of the minikube and it’s nodeport of
our webservice to generate load on the http address.

For the first experiment these were the specifications for number of users, the duration
and spawn rate. {”duration”: 300, ”users”: 2000 , ”spawn rate”: 0.5}

For the second experiment these were the specifications for number of users, the duration
and spawn rate. {”duration”: 100, ”users”: 1000 , ”spawn rate”: 10}

For the third experiment these were the specifications for number of users, the duration
and spawn rate. {”duration”: 300, ”users”: 10000 , ”spawn rate”: 20}

38

Figure 2: Dummy test using 100 users

39

Figure 3: 2000 users with a spawn rate of 0.5

40

Figure 4: 1000 users with a spawn rate of 10

41

Figure 5: 10000 users with a spawn rate of 20

42

Figure 6: 10000 users with a spawn rate of 20

43

6.3 Analysis of the results

By using ”kubectl get pods”, I can see that using my load.yaml file I was able to generate
load and create 10 pods for the replicas I specified.

After using ”kubectl get hpa cpu-autoscale –watch” I am able to watch the CPU
utilization before and after the load. Initially, when there is no load the Kubernetes tries
to maintain the number of replica containers as specified in the deployment (1 in this case).
Once the load generator deployment is initiated, the load generator creates traffic to the
application server running in the pod. We can see that the load gradually increases from
0% to 9%. At this point in time, the auto scaler does not increase (scale up) the number of
pods as the utilization of CPU matches the threshold of 50%. Also, the autoscaler does not
decrease (scale down) the number of replicas as it is always required to run at least 1 replica
based on the deployment.

We can thus see that the HPA algorithm is working based on the principle specified.

desiredReplicas = ceil[currentReplicas∗(currentMetricV alue/desiredMetricV alue)] (1)

Figure 7: Load generation

In the above figure we can see that that my CPU utilization peaked to 104% that is
it was twice the desired metric value of 50% CPU utilization. The autoscaling mechanism
responded adeptly to this surge in CPU utilization, which peaked at an unexpectedly high
104%, surpassing the targeted threshold of 50%. This breach triggered the autoscaler to exe-
cute its designated protocol, using the above formula that determined the need for additional
replicas to manage the increased demand on system resources. Consequently, the autoscaler
swiftly orchestrated the generation of two more replicas, effectively augmenting the initial
count from 1 to 3 replicas.

44

Figure 8: HPA Autoscaling

Upon removing the load generation pod, CPU utilization dropped from a post-autoscaling
37% to 0%. In Figure 8, the corresponding reduction in replicas is evident, decreasing from 3
to 2 and finally stabilizing at 1. This dynamic response illustrates the effectiveness of autoscal-
ing in adjusting resource allocation based on workload fluctuations. The system’s adaptabil-
ity, as showcased in the figure, ensures optimal resource utilization and cost-effectiveness by
scaling down when demand decreases.

The observed dynamic adjustments in the number of replicas in response to varying work-
loads confirm the effective autoscaling functionality of Kubernetes’ Horizontal Pod Autoscaler
(HPA). This automated scaling, demonstrated by the system’s ability to scale up during peak
demand and scale down as the load decreases, exemplifies Kubernetes’ adaptability and effi-
ciency in maintaining optimal resource utilization.

45

Figure 9: Locust monitoring

The visual analysis of images generated by Locust reveals a noteworthy correlation be-
tween the increasing number of users and the concurrent behavior of requests per second and
response time. As the user load escalates, the system’s response to this demand becomes
apparent in the synchronized elevation of both requests per second and response time. This
parallel trend suggests that as the number of users accessing the application rises, the system
is actively processing a higher volume of requests per second, inevitably influencing the over-
all response time. This visual insight is crucial for understanding how the application scales
under different user loads and provides valuable information for optimizing performance and
ensuring a responsive user experience. The coherence between these metrics, as illustrated in
the Locust images, offers a comprehensive view of system behavior, aiding in the fine-tuning
of resources and configurations to maintain optimal performance even during peak usage
scenarios.

46

We are able to verify that the two TR’s TR: TR 1.1 - Optimizing Performance and
Scalability and TR: TR 4.1 Monitoring and Optimizing Cloud Resource Utiliza-
tion are achieved.

For TR 1.1 we have ran the Minikube experiment which showed us the autoscaling func-
tionality. The use of HPA in Minikube, coupled with the Locust load testing tool, facilitates
the optimization of performance and scalability. HPA dynamically adjusts the number of
replicas based on observed metrics, such as CPU utilization or other specified parameters.
By deploying Locust to generate varying workloads, the system’s responsiveness to changing
demands is thoroughly tested. As load increases, HPA intelligently scales up the number of
replicas to distribute the workload efficiently, thereby optimizing performance. Conversely,
as the load decreases, HPA scales down the replicas, preventing unnecessary resource alloca-
tion and ensuring optimal scalability.

For TR 4.1 Monitoring and Optimizing Cloud Resource Utilization, HPA in conjunction
with Minikube and Locust contributes to effective monitoring and optimization of cloud
resource utilization. HPA continuously monitors specified metrics to make informed scaling
decisions. In this context, it actively observes and responds to CPU utilization. The Locust
load testing tool simulates realistic user scenarios, providing valuable data on how the system
behaves under different loads. By dynamically adjusting the number of replicas, HPA ensures
that cloud resources are utilized optimally. This aligns with the overarching objective of TR
4.1, which is to monitor and optimize resource utilization in a cloud environment.

Figure 10: HPA coupled with locust monitoring

47

Figure 11: Locust monitoring

48

In summary, the successful deployment and interaction of HPA within the Minikube envi-
ronment, coupled with load testing using Locust, affirm the achievement of both TR 1.1 and
TR 4.1. The combination of these tools and technologies not only validates the optimization
of performance and scalability but also underscores the active monitoring and efficient utiliza-
tion of cloud resources in dynamic and containerized environments. Applying the successful
deployment of HPA and load testing to a healthcare wearable device application is crucial.
In healthcare, where accuracy and real-time responsiveness are vital, HPA’s dynamic scaling
ensures the app handles varying loads efficiently, adapting to user activity changes. Active
monitoring boosts reliability, enabling quick adaptation to evolving conditions. The proven
effectiveness of this technology stack in Minikube establishes a robust foundation for scaling
and optimizing healthcare wearables to meet strict performance, scalability, and resource
efficiency requirements.

49

7 ANSIBLE PLAYBOOKS

skipped

7.1 Description of management tasks

skipped

7.2 Playbook Design

skipped

7.3 Experiment runs

skipped

50

8 DEMOSTRATION

skipped

51

9 COMPARISIONS

skipped

52

10 CONCLUSION

10.1 The lessons learned

The journey of integrating health wearables with cloud technology has been a transforma-
tive learning experience for our team. Wearing multiple hats throughout the project, from
stakeholders defining business requirements to evolving into cloud architects, we navigated
challenges that enriched our understanding and skill set.

1. Requirements Development - The process of formulating Business Requirements
(BRs) and Technical Requirements (TRs), guided by the Well-Architected Framework
documentation, significantly enhanced our ability to translate goals into actionable
technical aspects.

2. Stakeholder Perspective - Initially defining business requirements allowed us to
empathize with stakeholders, ensuring our cloud architecture aligns with real-world
needs and user benefits.

3. Tradeoff Analysis - Identifying and articulating tradeoffs between requirements was
a complex task. Balancing conflicting demands required careful consideration, high-
lighting the intricacies of system design.

4. Dynamic Scalability Challenges - The project highlighted the nuances of dynami-
cally scaling cloud resources based on demand. Understanding how to efficiently scale
resources up and down in response to varying workloads was a dynamic challenge, re-
quiring constant optimization for cost-effectiveness without compromising performance.

5. Cost Management Dynamics - Optimizing costs in a cloud environment necessi-
tated a deep understanding of pricing models and resource utilization. Learning to
balance performance requirements with cost efficiency while avoiding unnecessary ex-
penditures became a crucial aspect of effective cloud project management.

6. AWS Expertise Challenges - As a team with limited expertise in AWS and sys-
tem architecture, the initial design phase posed challenges. However, overcoming this
hurdle allowed us to appreciate not just the individual services but also their seamless
integration for a robust system.

7. Documentation Mastery - The project sharpened our ability to swiftly comprehend
and apply insights from extensive documentation, reinforcing our capacity to up-skill
efficiently.

In conclusion, this project not only deepened our understanding of cloud-native architec-
ture, AWS services, and tradeoff considerations but also honed our collaborative and adaptive
skills. The integration of health wearables with the cloud presents a promising avenue for
future healthcare advancements, and our journey has equipped us with the knowledge and
experience to contribute meaningfully to this evolving field. The lessons learned lay a solid
foundation for future projects, emphasizing the importance of continuous learning and agility
in the ever-evolving landscape of cloud technology and healthcare solutions.

53

10.2 Possible continuation of the project

The future development of the Health Wearables and Cloud Integration Project involves
several key directions. Enhancements in machine learning models will enable more accurate
health predictions and personalized recommendations based on real-time data. Compatibility
with a broader range of wearable devices and the integration of telehealth features will extend
the project’s reach and utility. Implementing blockchain for enhanced security and ensuring
continuous compliance with evolving healthcare regulations will reinforce data integrity and
user trust. Strategies for improved user engagement, interoperability with Electronic Health
Records (EHR), and geographic expansion will further optimize the project’s impact. Contin-
uous performance optimization, user feedback integration, and potential collaborations with
research institutions offer avenues for refinement and contribution to broader healthcare re-
search initiatives. Exploring ethical data monetization opportunities can secure the project’s
sustainability while maintaining a commitment to privacy and user-centricity. These strategic
directions ensure the project’s evolution aligns with technological advancements and meets
the dynamic needs of the healthcare landscape.

54

11 References

References

[1] Yannis Viniotis and Ioannis Papapanagiotou. Cloud Architecture ’ECE547/CSC547 Class
Notes. Fall 2023.

[2] AWS CloudFormation https://aws.amazon.com/cloudformation/

[3] OpenAI. (2023). ChatGPT [Large language model]. https://openai.com/blog/chatgpt

[4] Google. (2023). Google Bard [Large language model]. https://bard.google.com/chat

[5] SaaS Solutions on AWS. https://d1.awsstatic.com/whitepapers/

saas-solutions-on-aws-final.pdf

[6] AWS Well-Architected Framework. https://docs.aws.amazon.com/wellarchitected/
latest/framework/welcome.html

[7] John S. Hammond, Ralph L. Keeney, and Howard Raiffa, “Even Swaps: A Rational
Method for Making Trade-offs,” Magazine, March–April 1998.

[8] AWS Healthcare Data Analytics: Opioid Crisis. https://docs.aws.amazon.com/

whitepapers/latest/healthcare-data-analytics-framework-opioid-crisis/

reference-architecture-and-best-practices.html

[9] AWS Healthcare Industry Lens: Healthcare Analytics Reference Architecture. https:
//docs.aws.amazon.com/wellarchitected/latest/healthcare-industry-lens/

healthcare-analytics-reference-architecture.html

[10] AWS Blog: Let’s Architect - Architecting in Health Tech. https://aws.amazon.com/
blogs/architecture/lets-architect-architecting-in-health-tech/

[11] AWS Blog: Improving the Utilization of Wearable Device Data Us-
ing an AWS Data Lake. https://aws.amazon.com/blogs/industries/

improving-the-utilization-of-wearable-device-data-using-an-aws-data-lake/

[12] Kubernetes Documentation: Horizontal Pod Autoscaler. https://kubernetes.io/

docs/tasks/run-application/horizontal-pod-autoscale/

[13] Locust Documentation: Writing a Locustfile. https://docs.locust.io/en/stable/
writing-a-locustfile.html

55

https://aws.amazon.com/cloudformation/
https://openai.com/blog/chatgpt
https://bard.google.com/chat
https://d1.awsstatic.com/whitepapers/saas-solutions-on-aws-final.pdf
https://d1.awsstatic.com/whitepapers/saas-solutions-on-aws-final.pdf
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/healthcare-data-analytics-framework-opioid-crisis/reference-architecture-and-best-practices.html
https://docs.aws.amazon.com/whitepapers/latest/healthcare-data-analytics-framework-opioid-crisis/reference-architecture-and-best-practices.html
https://docs.aws.amazon.com/whitepapers/latest/healthcare-data-analytics-framework-opioid-crisis/reference-architecture-and-best-practices.html
https://docs.aws.amazon.com/wellarchitected/latest/healthcare-industry-lens/healthcare-analytics-reference-architecture.html
https://docs.aws.amazon.com/wellarchitected/latest/healthcare-industry-lens/healthcare-analytics-reference-architecture.html
https://docs.aws.amazon.com/wellarchitected/latest/healthcare-industry-lens/healthcare-analytics-reference-architecture.html
https://aws.amazon.com/blogs/architecture/lets-architect-architecting-in-health-tech/
https://aws.amazon.com/blogs/architecture/lets-architect-architecting-in-health-tech/
https://aws.amazon.com/blogs/industries/improving-the-utilization-of-wearable-device-data-using-an-aws-data-lake/
https://aws.amazon.com/blogs/industries/improving-the-utilization-of-wearable-device-data-using-an-aws-data-lake/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://docs.locust.io/en/stable/writing-a-locustfile.html
https://docs.locust.io/en/stable/writing-a-locustfile.html

	INTRODUCTION
	Motivation
	Executive Summary

	PROBLEM DESCRIPTION
	The Problem
	 Business Requirements
	 Technical Requirements
	Trade-Offs

	PROVIDER SELECTION
	Criteria for choosing a provider
	Provider Comparison
	The Final Selection
	The list of services offered by the winner

	DESIGN DRAFT
	The basic building blocks of the design
	Top-level, informal validation of the design
	Action items and rough timeline

	THE SECOND DESIGN
	Use of the Well-Architected framework
	Discussion of pillars
	Operational Excellence
	Reliability

	Use of Cloudformation diagrams
	Validation of the design
	Design principles and best practices used
	Tradeoffs revisited
	Discussion of an alternate design

	KUBERNETES EXPERIMENTATION
	 Experiment Design
	Workload generation with Locust
	Analysis of the results

	ANSIBLE PLAYBOOKS
	Description of management tasks
	Playbook Design
	Experiment runs

	DEMOSTRATION
	COMPARISIONS
	CONCLUSION
	The lessons learned
	Possible continuation of the project

	References

